3GPP TSG-SA3 Meeting #106-e
S3-220362
e-meeting, 14 - 25 February 2022
Source:
Philips International B.V.
Title:
Protection of discovery messages of variable length (simple and efficient)
Document for:
Approval

Agenda Item:
4.13
1
Decision/action requested

We ask SA3 to accept security algorithms in TS 33.305 capable of processing/protecting discovery messages of variable length. The proposed algorithms are based on TS 33.303.
2
References

3
Rationale
TS 24.554 specifies that metadata may be included in discovery messages as follows:

	11.2.B
Metadata

The Metadata parameter carries the application layer metadata information.

The Metadata information element is coded as shown in figure 11.2.B.1 and table 11.2.B.1.

The Metadata is a type 6 information element.

8

7

6

5

4

3

2

1

Metadata IEI

octet 1

Length of Metadata contents

octet 2

octet 3

Metadata contents

octet 4

octet m

Figure 11.2.B.1: Metadata information element

Table 11.2.B.1: Metadata information element

The length of Metadata contents field contains the binary coded representation of the length of the Metadata contents field.

The Metadata contents field contains the octets indicating the Metadata parameter. The format of the Metadata parameter is out of scope of this specification.

TS 24.554 also states multiple Editor’s Notes indicating that how the discovery messages are protected depend on SA3, for instance, in Clause 6.2.14.2.1.2 of TS 24.554 we find:

	Editor’s note:
Details of security related content in d) are FFS and will be determinated by SA WG3.

In Clause 6.1.3.2.3, it is stated that security algorithms in TS 33.303 can be used to protect discovery messages over the PC5 interface. It also includes the following Editor’s Note:

	Editor’s Note: it is for ffs whether security algorithms and/or process in clause 6.1.3.4.3 TS 33.303 [4] can be applied without modification given the potentially different size of the discovery message in 5G ProSe.

Since discovery messages can be longer than 23 bytes, security algorithms in TS 33.303 cannot be applied since they were designed for fixed-length 23 bytes long messages including a 4 bytes long MIC.

This document describes how to adapt the TS 33.303 scrambling and confidentiality routines to process messages of arbitrary length (including metadata).
Furthermore, it adapts the reception of discovery messages by processing first the first short part of the discovery message, and if successful, process the second long part of the discovery message with optional fields, e.g., metadata. This makes the system more robust against attacks.
4
Detailed proposal
***** BEGIN OF THE FIRST CHANGE **
6.1.3.2.3
Protection of the discovery messages over the PC5 interface
6.1.3.2.3.1
General

There are three general types of security that are used to protect the discovery messages as they are transferred over the PC5 interface between the UEs.

Firstly, integrity protection is provided by appending a MIC. The MIC is calculated in the sending UE using a received Discovery User Integrity Key (DUIK) and may either be checked at the receiving UE using the supplied DUIK or at the ProSe Function using the DUIK.

Secondly, scrambling protection, which ensures that there is no relationship between the discovery messages sent by a particular UE, i.e. to prevent tracking of a UE over time. A scrambling keystream is calculated from the Discovery User Scrambling Key (DUSK) and the UTC-based counter associated with the discovery slot (see 6.1.3.2.3.5 for more details on the calculation).

Finally, message-specific confidentiality, which provides confidentiality protection for part of the discovery message. This is used either when several UEs use the same DUSK or if it is desired to encrypt part of the discovery message from some of the UEs that are allowed to discover the UE. A keystream is calculated from the Discovery User Confidentility Key (DUCK), the content of the message and the UTC-based counter associated with the discovery slot (see 6.1.3.2.3.6 for more details on the calculation).
The security procedures that are applied at the sending and receiving UE are controlled by the ProSe Function by sending the Code-Sending Security Parameters and/or Code-Receiving Security Parameters to the appropriate UE (i.e. the UE shall support all of integrity protection, scrambling and message specific confidentiality). To achieve integrity protection for a ProSe restricted discovery message, either a DUSK or a DUIK needs to be provided. When a DUCK is used to apply message specific confidentiality, a DUIK is required for integrity protection as more than one message is being protected. To achieve source authenticity, the same DUIK may be shared by a single sending UE and a single receiving UE. Alternatively, a sending UE might use a DUIK to send a discovery message to multiple receiving UEs if each receiving UE makes use of match reports to verify the integrity of the received discovery message and the receiving UEs are not configured with the DUIK.

At the receiving side, the scrambling protection must be undone before any matching can be attempted. Given that the operation of undoing message-specific confidentiality is computationally intense, the matching operation that precedes it should have a very minimal chance of a false positive. To this end, the ProSe Function should ensure the number of bits in a discovery message that can be matched after any scrambling has been undone is at least 16 (leading to a false positive chance of 1 in 65,536 or less).

6.1.3.2.3.2
Message Processing in the sending UE
Figure 6.1.3.2.3-1 describes the structure of the discovery message. The short first part includes the fixed fields, e.g., Relay Service Code. The second part might include optional fields such as metadata. Some fields in the first part of the discovery message include:

· a 1-bit long Optional field O that indicates the presence of optional fields in the second part of the message,

· a 14-bits long length field L that indicates the length of the optinal fields in the second part of the message,

· a 25-bits long truncated hash field H obtained from the second part of the message, and

· a 32-bit Message Integrity Code (MIC) computed over the fields in the first part of the message.

[image: image1.emf]

O L H

23 bytes
32 bytes

Up to 9000 bytes

First short part of the discovery message
(fixed fields)

Second long part of the discovery message
(optional fields, metadata)

MIC

O

L

H

23 bytes

32 bytes

Up to 9000 bytes

First short part of the discovery message

(fixedfields)

Second long part of the discovery message

(optionalfields,metadata)

MIC

Figure 6.1.3.2.3-1

Editor’s Note: It is proposed that fields O, L, H have lenghts of 1 bit, 14 bits, and 25 bits, respectively. In total, 40 bits so that the total length of the first part of the message is 32 bytes. The explicit transmissions of some of these fields is for discussion since they might also be implicitly transmitted. For instance, the first 3 bytes of the metadata include the Metadata IE and length.

The UE sending a discovery message receives the Code-Sending Security Parameters from the ProSe Function (as described in the security flows) to indicate how to protect the message. The Code-Sending Security Parameters may contain a DUSK and may contain a DUIK. The Code-Sending Security Parameters may contain both, a DUCK and an Encrypted_bits_mask.

The UE sending a discovery message does the following steps:

1. Calculate a MIC2 if a DUIK was provided for the second part of the message, otherwise set MIC2 to all zeros.

2. Add message-specific confidentiality to the second part of message if DUCK was received and/or the second part of the message requires confidentiality protection,
3. Append MIC2 to the output of step 3.

4. Add scrambling over the output of step 4 if the DUSK was received.
5. Compute truncated hash H of the second part of the message (output of step 4).

6. Form Discovery Message (e.g. add Suffix if only Prefix was allocated) , and append fields O, L, and H.
7. Calculate MIC if a DUIK was provided, otherwise set MIC to all zeros

8. Add message-specific confidentiality to the message if DUCK was received

9. Append MIC to the output of step 8.

10. Add scrambling over the output of step 9 if the DUSK was received.
11. Create complete discovery message by appending output of step 4 to the output of step 10.
Editor’s Note: The second part of the message includes an independent messagge integrity code MIC2. This might not be always needed since integrity protection of the second part of the message is always enabled by means of the the truncated hash of the second part of the message that is verified by means of the message integrity code MIC1 included in the first part of the discovery message.

Editor’s Note: Steps 2, 3 and 4 and Steps 7, 8 and 9 follow the same order as in TS 33.303. It is preferred to rearrange them as swap Steps 3-4 and Steps 8-9 so that the MICs are always confidentiality prottected. It is ffs whether to do it.
6.1.3.2.3.3
Protected message processing in the receiving UE

The Code-Receiving Security Parameters received from the ProSe Function (as described in the security flows) are used to indicate to a UE how a received discovery message is protected. The Code-Receiving Security Parameters may contain a DUSK, may contain either a DUIK or an indication whether to use Match Reports for MIC checking. The Match Reports option is not allowed for ProSe Query Codes. The Code-Receiving Security Parameters may also contain both a DUCK and a corresponding Encrypted_bits_mask.

The UE receiving a Discovery Message does the following steps:

1. Undo scrambling in the first part of the message (as in step 5 of sending UE) if a DUSK was received.
2. Check for match on the bits of the message that are not encrypted using message specific confidentiality. If no match, then abort.

NOTE 1: Some bits that the discovery filter indicates to be matched, may be encrypted by message-specific confidentiality at this stage. The UE can look for a match on the other bits after this step to minimise the amount of processing performed before finding a match.

3. Undo message-specific confidentiality in the first part of the message if a DUCK was received (as in step 3 of sending UE)

4. Check for full match if only a match on non-encrypted bits was found in 3. If no match then abort

5. If a MIC check is required, check MIC1 directly (if a DUIK was given in the Discovery Filter Security Parameters) or via Match Report if indicated in the Discovery Filter Security Parameters. If MIC1 verification fails, abort processing.
NOTE 2: Requiring a checking of the MIC (at either the UE or via Match Reports) may only be omitted when the scrambling protection provides integrity protection of the bits of the message that are of interest to the receiving UE. Such integrity protection is only provided when (1) a given DUSK protects exactly one ProSe Code that the receiver matches, or (2) when message-specific confidentiality is applied to a ProSe Code but the receiving UE is not provided with the DUSK to remove the message-specific confidentiality and all the non-encrypted bits take a fixed value that the receiver matches. In the first case, if an attacker changes any bit of the message, the match will fail. In the second case, if an attacker changes a non-encrypted bit the match will fail and changing an encrypted does nothing as the receiving UE ignores these bits anyway. In latter case, the receiving UE could not successfully check the MIC.
6. If length field > 32 present in the first part of the message or optional fields,

a. If the the truncated hash of the scrambled/encrypted/integrity protected second part of the message corresponds to the truncated hash field H included and verify in the first part of the message.

i. descramble the second part of the message if the DUSK was received.

ii. decrypt the second part of the message if the DUCK was received.

iii. verify the integrity of the second part of the message if the DUIK was received.

Editor’s Note: Step 6.a.iii might not always be required since Step 6.a already performs integrity checking.
6.1.3.2.3.4
Integrity protection description

The sending UE does the following

1. Compute output bitsequence from DUIK, Message, and UTC-based counter passed through a MIC calculation function in Annex A.2 in TS 33.303.

2. Take the 4 bytes of the output of the function and set that as the value of the MIC for this Message.

The receiving UE or ProSe Function does the exact same steps but also does a comparison between the computed MIC and the received MIC.
The same algorithm can be used in the computation of MIC1 and MIC2 used in the first and second parts of the discovery message.

Editor’s Note: A different FC identifier is required when computting MIC1 and MIC2.
6.1.3.2.3.5
Scrambling description

The sending UE does the following:

1. Set the 4 LSBs of the UTC-based counter equal zero, for the purpose of this scrambling calculation only.

2. Compute the time-hash-bitsequence from DUSK and the UTC-based counter (modified as in step 1), passed through a keyed hash function.
a.
time-hash-bitsequence = “”

b.
For i = 0 to FLOOR((L+2*LMIC)/32):

time-hash-bitsequence = time-hash-bitsequence || KDF (DUSK, UTC-based counter, i)

c.
time-hash-bitsequence = time-hash-bitsequence || LSB(KDF (DUSK, UTC-based counter, FLOOR((L+2*LMIC)/32) + 1), 8*(L + 2*LMIC – 32* FLOOR((L+2*LMIC)/32)))

3. XOR the time-hash-bitsequence with the entire Discovery Message (including MIC) being processed.
Where L is the length of the discovery message; LMIC is the length of the MIC, e.g., 4 bytes; || indicates concatenation; LSB(x,b) returns the b least significant bits of x; FLOOR(x) returns the largest integer less than or equal to x; and KDF() refers to a key derivation function as in clause A.X.
The receiving UE does the exact same steps except applied to the received message being processed.

2. Message-specific confidentiality description

The sending UE does the following:

1. Compute Key_calc_mask = (Encrypted_bits_mask XOR 0xFF..FF) || 0xFFFFFFFF

2.
Obtain Keystream as follows:

a.
Keystream = “”

b.
HH = (Key_calc_mask AND (Message || MIC)) or alternatively Hash((Key_calc_mask AND (Message || MIC)))

c.
For I = a to (a + FLOOR((L+2*LMIC)/32)):

i.
Keystream = Keystream || KDF (DUCK, UTC-based counter, I, HH).

d.
Keystream = Keystream || LSB(KDF (DUCK, UTC-based counter, FLOOR((L+2*LMIC)/32) + 1, HH), 8*(FLOOR((L+2*LMIC)/32) – 32* FLOOR((L+2*LMIN)/32)))

3.
XOR (Keystream AND Encrypted_bits_mask) into the Message.

The receiving UE does the exact same steps except applied to the received Discovery Message being processed.

Where L is the length of the discovery message; LMIC is the length of the MIC, e.g., 4 bytes; || indicates concatenation; LSB(x,b) returns the b least significant bits of x; FLOOR(x) returns the largest integer less than or equal to x; and KDF() refers to a key derivation function as in Clause A.Y.

Editor’s Note: It is ffs whether the integrity and confidentiality protection of the second part of the message might also be done with one of the standard 5G confidentiality (e.g., 128-NEA1, 128-NEA2, 128-NEA3) and integrity (e.g., 128-NIA1, 128-NIA2, 128-NIA3) algorithms. Which NIA or NEA algorithm is used might be signaled in the first part of the discovery message.

***** END OF THE FIRST CHANGE ****
***** BEGIN OF THE SECOND CHANGE ****
A.X
Calculation of scrambling bits for discovery
When calculating the time-hash-bitsequence for discovery, the following parameters shall be used to form the input S to the KDF that is specified in Annex B of TS 33.220 [5]:

-
FC = 0x4C
-
P0 = UTC-based counter for scrambling associated with the discovery slot – see subclause 6.1.3.2.3.5.
-
L0 = length of above (i.e. 0x00 0x04).

-
P1 = message fragment index.

-
L1 = length of the above (i.e., 0x00 0x02).
The input key shall be the 256-bit DUSK.
L1 is 2 bytes long since this is the minimum byte length required to protect up to 9000 bytes. P1 refers to a fragment or block of 32 bytes in the discovery message.

For a discovery message of length L, a total of CEIL((L+2*LMIC)/32) calls to the KDF are required, each with a different P1 value.

The scrambling bit sequence is set to the concatenation of the whole KDF outputs of the first FLOOR((L+2*LMIC)/32) KDF calls and the R = 8(L + 2*LMIC – 32*FLOOR((L+2*LMIC)/32)) least significant bits of the output of the last KDF calls.
Editor’s Note: A different FC identifier might be required.
A.Y
Calculation of message-specific confidentiality keystream for discovery

When calculating the message-specific confidentiality keystream for discovery, the following parameters shall be used to form the input S to the KDF that is specified in Annex B of TS 33.220 [5]:

-
FC = 0x4D
-
P0 = UTC-based counter associated with the discovery slot – see subclause 6.1.3.2.3.6.
-
L0 = length of above (i.e. 0x00 0x04).
-
P1 = message fragment index.

-
L1 = length of the above (i.e., 0x00 0x02).

-
P2 = HH.
-
L2 = length of HH.
The input key shall be the 256-bit DUCK.

For a discovery message of length L, a total of CEIL((L+2*LMIC)/32) calls to the KDF are required each with a different P1 value.

The message-specific confidentiality keystream is set to the concatenation of the KDF outputs of the first FLOOR((L+2*LMIC)/32) KDF calls and the R = 8(L+2*LMIC – 32*FLOOR((L+2*LMIC)/32)) least significant bits of the output of the last KDF call.

Editor’s Note: It is ffs if the MIC is to be encrypted. If the MIC is not encrypted, the length should be set to L (instead of only L+2*LMIC) where LMIC is the length of the MIC.
Editor’s Note: A different FC identifier might be required.
***** END OF THE SECOND CHANGE ****
